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D03RAF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

D03RAF integrates a system of linear or nonlinear, time-dependent partial differential equations (PDEs) in
two space dimensions on a rectangular domain. The method of lines is employed to reduce the PDEs to a
system of ordinary differential equations (ODEs) which are solved using a backward differentiation
formula (BDF) method. The resulting system of nonlinear equations is solved using a modified Newton
method and a Bi-CGSTAB iterative linear solver with ILU preconditioning. Local uniform grid refinement
is used to improve the accuracy of the solution. D03RAF originates from the VLUGR2 package (see
Blom and Verwer (1993) and Blom et al. (1996)).

2 Specification

SUBROUTINE D03RAF (NPDE, TS, TOUT, DT, XMIN, XMAX, YMIN, YMAX, NX, NY,
1 TOLS, TOLT, PDEDEF, BNDARY, PDEIV, MONITR, OPTI,
2 OPTR, RWK, LENRWK, IWK, LENIWK, LWK, LENLWK, ITRACE,
3 IND, IFAIL)

INTEGER NPDE, NX, NY, OPTI(4), LENRWK, IWK(LENIWK), LENIWK,
1 LENLWK, ITRACE, IND, IFAIL
double precision TS, TOUT, DT(3), XMIN, XMAX, YMIN, YMAX, TOLS, TOLT,

1 OPTR(3,NPDE), RWK(LENRWK)
LOGICAL LWK(LENLWK)
EXTERNAL PDEDEF, BNDARY, PDEIV, MONITR

3 Description

D03RAF integrates the system of PDEs:

Fj t; x; y; u; ut; ux; uy; uxx; uxy; uyy
� �

¼ 0, j ¼ 1; 2; . . . ;NPDE, ð1Þ

for x and y in the rectangular domain xmin � x � xmax , ymin � y � ymax , and time interval t0 � t � tout,
where the vector u is the set of solution values

u x; y; tð Þ ¼ u1 x; y; tð Þ; . . . ; uNPDE x; y; tð Þ
h iT

,

and ut denotes partial differentiation with respect to t, and similarly for ux etc.

The functions Fj must be supplied by you in a (sub)program PDEDEF. Similarly the initial values of the
functions u x; y; tð Þ must be specified at t ¼ t0 in a user-supplied (sub)program PDEIV.

Note that whilst complete generality is offered by the master equations (1), D03RAF is not appropriate for
all PDEs. In particular, hyperbolic systems should not be solved using this routine. Also, at least one
component of ut must appear in the system of PDEs.

The boundary conditions must be supplied by you in a (sub)program BNDARY in the form

Gj t; x; y; u; ut; ux; uy
� �

¼ 0 at x ¼ xmin ; xmax ; y ¼ ymin ; ymax , j ¼ 1; 2; . . . ;NPDE. ð2Þ

The domain is covered by a uniform coarse base grid of size nx � ny specified by you, and nested finer
uniform subgrids are subsequently created in regions with high spatial activity. The refinement is
controlled using a space monitor which is computed from the current solution and a user-supplied space
tolerance TOLS. A number of optional parameters, e.g., the maximum number of grid levels at any time,
and some weighting factors, can be specified in the arrays OPTI and OPTR. Further details of the
refinement strategy can be found in Section 8.
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The system of PDEs and the boundary conditions are discretized in space on each grid using a standard
second-order finite difference scheme (centred on the internal domain and one-sided at the boundaries), and
the resulting system of ODEs is integrated in time using a second-order, two-step, implicit BDF method
with variable step size. The time integration is controlled using a time monitor computed at each grid level
from the current solution and a user-supplied time tolerance TOLT, and some further optional user-
specified weighting factors held in OPTR (see Section 8 for details). The time monitor is used to compute
a new step size, subject to restrictions on the size of the change between steps, and (optional) user-
specified maximum and minimum step sizes held in DT. The step size is adjusted so that the remaining
integration interval is an integer number times �t. In this way a solution is obtained at t ¼ tout.

A modified Newton method is used to solve the nonlinear equations arising from the time integration. You
may specify (in OPTI) the maximum number of Newton iterations to be attempted. A Jacobian matrix is
calculated at the beginning of each time step. If the Newton process diverges or the maximum number of
iterations is exceeded, a new Jacobian is calculated using the most recent iterates and the Newton process
is restarted. If convergence is not achieved after the (optional) user-specified maximum number of new
Jacobian evaluations, the time step is retried with �t ¼ �t=4. The linear systems arising from the Newton
iteration are solved using a Bi-CGSTAB iterative method, in combination with ILU preconditioning. The
maximum number of iterations can be specified by you in OPTI.

The solution at all grid levels is stored in the workspace arrays, along with other information needed for a
restart (i.e., a continuation call). It is not intended that you extract the solution from these arrays, indeed
the necessary information regarding these arrays is not included. The user-supplied monitor (sub)program
MONITR should be used to obtain the solution at particular levels and times. MONITR is called at the
end of every time step, with the last step being identified via the input parameter TLAST.

Within the user-supplied (sub)programs PDEIV, PDEDEF, BNDARY and MONITR the data structure is as
follows. Each point on a particular grid is given an index (ranging from 1 to the total number of points on
the grid) and all co-ordinate or solution information is stored in arrays according to this index, e.g., XðiÞ
and YðiÞ contain the x- and y co-ordinate of point i, and Uði; jÞ contains the jth solution component uj at
point i.

Further details of the underlying algorithm can be found in Section 8 and in Blom and Verwer (1993) and
Blom et al. (1996) and the references therein.
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5 Parameters

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

Constraint: NPDE � 1.
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2: TS – double precision Input/Output

On entry: the initial value of the independent variable t.

On exit: the value of t which has been reached. Normally TS ¼ TOUT.

Constraint: TS < TOUT.

3: TOUT – double precision Input

On entry: the final value of t to which the integration is to be carried out.

4: DTð3Þ – double precision array Input/Output

On entry: the initial, minimum and maximum time step sizes respectively.

DTð1Þ specifies the initial time step size to be used on the first entry, i.e., when IND ¼ 0. If
DTð1Þ ¼ 0:0 then the default value DTð1Þ ¼ 0:01� TOUT� TSð Þ is used. On subsequent entries
(IND ¼ 1), the value of DTð1Þ is not referenced.

DTð2Þ specifies the minimum time step size to be attempted by the integrator. If DTð2Þ ¼ 0:0 the
default value DTð2Þ ¼ 10:0�machine precision is used.

DTð3Þ specifies the maximum time step size to be attempted by the integrator. If DTð3Þ ¼ 0:0 the
default value DTð3Þ ¼ TOUT� TS is used.

On exit: DTð1Þ contains the time step size for the next time step. DTð2Þ and DTð3Þ are unchanged
or set to their default values if zero on entry.

Constraints:

if IND ¼ 1, DTð1Þ is unconstrained;
DTð1Þ � 0 and 10:0�machine precision�max TSj j; TOUTj jð Þ � DTð1Þ � TOUT� TS
and DTð2Þ � DTð1Þ � DTð3Þ otherwise.

Where the values of DTð2Þ and DTð3Þ will have been reset to their default values if zero on entry.

DTð2Þ and DTð3Þ must satisfy DTðiÞ � 0, for i ¼ 2; 3 and DTð2Þ � DTð3Þ for IND ¼ 0 and
IND ¼ 1

5: XMIN – double precision Input
6: XMAX – double precision Input

On entry: the extents of the rectangular domain in the x-direction, i.e., the x co-ordinates of the left
and right boundaries respectively.

Constraint: XMIN < XMAX and XMAX must be sufficiently distinguishable from XMIN for the
precision of the machine being used.

7: YMIN – double precision Input
8: YMAX – double precision Input

On entry: the extents of the rectangular domain in the y-direction, i.e., the y co-ordinates of the
lower and upper boundaries respectively.

Constraint: YMIN < YMAX and YMAX must be sufficiently distinguishable from YMIN for the
precision of the machine being used.

9: NX – INTEGER Input

On entry: the number of grid points in the x-direction (including the boundary points).

Constraint: NX � 4.

10: NY – INTEGER Input

On entry: the number of grid points in the y-direction (including the boundary points).

Constraint: NY � 4.

D03 – Partial Differential Equations D03RAF

[NP3657/21] D03RAF.3



11: TOLS – double precision Input

On entry: the space tolerance used in the grid refinement strategy (� in equation (4)). See
Section 8.2.

Constraint: TOLS > 0:0.

12: TOLT – double precision Input

On entry: the time tolerance used to determine the time step size (� in equation (7)). See
Section 8.3.

Constraint: TOLT > 0:0.

13: PDEDEF – SUBROUTINE, supplied by the user. External Procedure

PDEDEF must evaluate the functions Fj, for j ¼ 1; 2; . . . ;NPDE, in equation (1) which define the
system of PDEs (i.e., the residuals of the resulting ODE system) at all interior points of the domain.
Values at points on the boundaries of the domain are ignored and will be overwritten by the user-
supplied (sub)program BNDARY. PDEDEF is called for each subgrid in turn.

Its specification is:

SUBROUTINE PDEDEF (NPTS, NPDE, T, X, Y, U, UT, UX, UY, UXX, UXY,
1 UYY, RES)

INTEGER NPTS, NPDE
double precision T, X(NPTS), Y(NPTS), U(NPTS,NPDE), UT(NPTS,NPDE),

1 UX(NPTS,NPDE), UY(NPTS,NPDE), UXX(NPTS,NPDE),
2 UXY(NPTS,NPDE), UYY(NPTS,NPDE), RES(NPTS,NPDE)

1: NPTS – INTEGER Input

On entry: the number of grid points in the current grid.

2: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

3: T – double precision Input

On entry: the current value of the independent variable t.

4: XðNPTSÞ – double precision array Input

On entry: XðiÞ contains the x co-ordinate of the ith grid point, for i ¼ 1; 2; . . . ;NPTS.

5: YðNPTSÞ – double precision array Input

On entry: YðiÞ contains the y co-ordinate of the ith grid point, for i ¼ 1; 2; . . . ;NPTS.

6: UðNPTS,NPDEÞ – double precision array Input

On entry: Uði; jÞ contains the value of the jth PDE component at the ith grid point, for
i ¼ 1; 2; . . . ;NPTS; j ¼ 1; 2; . . . ;NPDE.

7: UTðNPTS,NPDEÞ – double precision array Input

On entry: UTði; jÞ contains the value of
@u

@t
for the jth PDE component at the ith grid

point, for i ¼ 1; 2; . . . ;NPTS; j ¼ 1; 2; . . . ;NPDE.

8: UXðNPTS,NPDEÞ – double precision array Input

On entry: UXði; jÞ contains the value of
@u

@x
for the jth PDE component at the ith grid

point, for i ¼ 1; 2; . . . ;NPTS; j ¼ 1; 2; . . . ;NPDE.
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9: UYðNPTS,NPDEÞ – double precision array Input

On entry: UYði; jÞ contains the value of
@u

@y
for the jth PDE component at the ith grid

point, for i ¼ 1; 2; . . . ;NPTS; j ¼ 1; 2; . . . ;NPDE.

10: UXXðNPTS,NPDEÞ – double precision array Input

On entry: UXXði; jÞ contains the value of
@2u

@x2
for the jth PDE component at the ith grid

point, for i ¼ 1; 2; . . . ;NPTS; j ¼ 1; 2; . . . ;NPDE.

11: UXYðNPTS,NPDEÞ – double precision array Input

On entry: UXYði; jÞ contains the value of
@2u

@x@y
for the jth PDE component at the ith grid

point, for i ¼ 1; 2; . . . ;NPTS; j ¼ 1; 2; . . . ;NPDE.

12: UYYðNPTS,NPDEÞ – double precision array Input

On entry: UYYði; jÞ contains the value of
@2u

@y2
for the jth PDE component at the ith grid

point, for i ¼ 1; 2; . . . ;NPTS; j ¼ 1; 2; . . . ;NPDE.

13: RESðNPTS,NPDEÞ – double precision array Output

On exit: RESði; jÞ must contain the value of Fj, for j ¼ 1; 2; . . . ;NPDE, at the ith grid
point, for i ¼ 1; 2; . . . ;NPTS, although the residuals at boundary points will be ignored
(and overwritten later on) and so they need not be specified here.

PDEDEF must be declared as EXTERNAL in the (sub)program from which D03RAF is called.
Parameters denoted as Input must not be changed by this procedure.

14: BNDARY – SUBROUTINE, supplied by the user. External Procedure

BNDARY must evaluate the functions Gj, for j ¼ 1; 2; . . . ;NPDE, in equation (2) which define the
boundary conditions at all boundary points of the domain. Residuals at interior points must not be
altered by this (sub)program.

Its specification is:

SUBROUTINE BNDARY (NPTS, NPDE, T, X, Y, U, UT, UX, UY, NBPTS, LBND,
1 RES)

INTEGER NPTS, NPDE, NBPTS, LBND(NBPTS)
double precision T, X(NPTS), Y(NPTS), U(NPTS,NPDE), UT(NPTS,NPDE),

1 UX(NPTS,NPDE), UY(NPTS,NPDE), RES(NPTS,NPDE)

1: NPTS – INTEGER Input

On entry: the number of grid points in the current grid.

2: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

3: T – double precision Input

On entry: the current value of the independent variable t.

4: XðNPTSÞ – double precision array Input

On entry: XðiÞ contains the x co-ordinate of the ith grid point, for i ¼ 1; 2; . . . ;NPTS.
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5: YðNPTSÞ – double precision array Input

On entry: YðiÞ contains the y co-ordinate of the ith grid point, for i ¼ 1; 2; . . . ;NPTS.

6: UðNPTS,NPDEÞ – double precision array Input

On entry: Uði; jÞ contains the value of the jth PDE component at the ith grid point, for
i ¼ 1; 2; . . . ;NPTS; j ¼ 1; 2; . . . ;NPDE.

7: UTðNPTS,NPDEÞ – double precision array Input

On entry: UTði; jÞ contains the value of
@u

@t
for the jth PDE component at the ith grid

point, for i ¼ 1; 2; . . . ;NPTS; j ¼ 1; 2; . . . ;NPDE.

8: UXðNPTS,NPDEÞ – double precision array Input

On entry: UXði; jÞ contains the value of
@u

@x
for the jth PDE component at the ith grid

point, for i ¼ 1; 2; . . . ;NPTS; j ¼ 1; 2; . . . ;NPDE.

9: UYðNPTS,NPDEÞ – double precision array Input

On entry: UYði; jÞ contains the value of
@u

@y
for the jth PDE component at the ith grid

point, for i ¼ 1; 2; . . . ;NPTS; j ¼ 1; 2; . . . ;NPDE.

10: NBPTS – INTEGER Input

On entry: the number of boundary points in the grid.

11: LBNDðNBPTSÞ – INTEGER array Input

On entry: LBNDðiÞ contains the grid index for the ith boundary point for
i ¼ 1; 2; . . . ;NBPTS. Hence the ith boundary point has co-ordinates XðLBNDðiÞÞ and
YðLBNDðiÞÞ, and the corresponding solution values are UðLBNDðiÞNPDEÞ, etc.

12: RESðNPTS,NPDEÞ – double precision array Output

On exit: RESðLBNDðiÞjÞ must contain the value of Gj for j ¼ 1; 2; . . . ;NPDE, at the ith
boundary point for i ¼ 1; 2; . . . ;NBPTS.

Note: elements of RES corresponding to interior points must not be altered.

BNDARY must be declared as EXTERNAL in the (sub)program from which D03RAF is called.
Parameters denoted as Input must not be changed by this procedure.

15: PDEIV – SUBROUTINE, supplied by the user. External Procedure

PDEIV must specify the initial values of the PDE components u at all points in the grid. PDEIV is
not referenced if, on entry, IND ¼ 1.

Its specification is:

SUBROUTINE PDEIV (NPTS, NPDE, T, X, Y, U)

INTEGER NPTS, NPDE
double precision T, X(NPTS), Y(NPTS), U(NPTS,NPDE)

1: NPTS – INTEGER Input

On entry: the number of grid points in the grid.
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2: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

3: T – double precision Input

On entry: the (initial) value of the independent variable t.

4: XðNPTSÞ – double precision array Input

On entry: XðiÞ contains the x co-ordinate of the ith grid point, for i ¼ 1; 2; . . . ;NPTS.

5: YðNPTSÞ – double precision array Input

On entry: YðiÞ contains the y co-ordinate of the ith grid point, for i ¼ 1; 2; . . . ;NPTS.

6: UðNPTS,NPDEÞ – double precision array Output

On exit: Uði; jÞ must contain the value of the jth PDE component at the ith grid point, for
i ¼ 1; 2; . . . ;NPTS; j ¼ 1; 2; . . . ;NPDE.

PDEIV must be declared as EXTERNAL in the (sub)program from which D03RAF is called.
Parameters denoted as Input must not be changed by this procedure.

16: MONITR – SUBROUTINE, supplied by the user. External Procedure

MONITR is called by D03RAF at the end of every successful time step, and may be used to
examine or print the solution or perform other tasks such as error calculations, particularly at the
final time step, indicated by the parameter TLAST. The input arguments contain information about
the grid and solution at all grid levels used.

MONITR can also be used to force an immediate tidy termination of the solution process and return
to the calling program.

Its specification is:

SUBROUTINE MONITR (NPDE, T, DT, DTNEW, TLAST, NLEV, NGPTS, XPTS,
1 YPTS, LSOL, SOL, IERR)

INTEGER NPDE, NLEV, NGPTS(NLEV), LSOL(NLEV), IERR
double precision T, DT, DTNEW, XPTS(*), YPTS(*), SOL(*)
LOGICAL TLAST

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – double precision Input

On entry: the current value of the independent variable t, i.e., the time at the end of the
integration step just completed.

3: DT – double precision Input

On entry: the current time step size �t, i.e., the time step size used for the integration step
just completed.

4: DTNEW – double precision Input

On entry: the step size that will be used for the next time step.

5: TLAST – LOGICAL Input

On entry: indicates if intermediate or final time step. TLAST ¼ :FALSE: for an
intermediate step, TLAST ¼ :TRUE: for the last call to MONITR before returning to your
program.
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6: NLEV – INTEGER Input

On entry: the number of grid levels used at time T.

7: NGPTSðNLEVÞ – INTEGER array Input

On entry: NGPTSðlÞ contains the number of grid points at level l, for l ¼ 1; 2; . . . ;NLEV.

8: XPTSð�Þ – double precision array Input

Note: the dimension of the array XPTS must be at least the sum of the first NLEV entries
of NGPTS.

On entry: contains the x co-ordinates of the grid points in each level in turn, i.e., XðiÞ, for
i ¼ 1; 2; . . . ;NGPTSðlÞ, for l ¼ 1; 2; . . . ;NLEV.

So for level l, XðiÞ ¼ XPTSðk þ iÞ, where
k ¼ NGPTSð1Þ þ NGPTSð2Þ þ � � � þ NGPTSðl � 1Þ, for i ¼ 1; 2; . . . ;NGPTSðlÞ;
l ¼ 1; 2; . . . ;NLEV.

9: YPTSð�Þ – double precision array Input

Note: the dimension of the array YPTS must be at least the sum of the first NLEV entries
of NGPTS.

On entry: contains the y co-ordinates of the grid points in each level in turn, i.e., YðiÞ, for
i ¼ 1; 2; . . . ;NGPTSðlÞ; l ¼ 1; 2; . . . ;NLEV.

So for level l, YðiÞ ¼ YPTSðk þ iÞ, where
k ¼ NGPTSð1Þ þ NGPTSð2Þ þ � � � þ NGPTSðl � 1Þ, for i ¼ 1; 2; . . . ;NGPTSðlÞ;
l ¼ 1; 2; . . . ;NLEV.

10: LSOLðNLEVÞ – INTEGER array Input

On entry: LSOLðlÞ contains the pointer to the solution in SOL at grid level l and time T.
(LSOLðlÞ actually contains the array index immediately preceding the start of the solution
in SOL.)

11: SOLð�Þ – double precision array Input

Note: the dimension of the array SOL must be at least NPDE times the sum of the first
NLEV elements of NGPTS.

On entry: contains the solution UðNGPTSðlÞNPDEÞ at time T for each grid level l in turn,
positioned according to LSOL, i.e., for level l,

Uði; jÞ ¼ SOL LSOLðlÞ þ j� 1ð Þ � NGPTSðlÞ þ ið Þ,
for i ¼ 1; . . . ;NGPTSðlÞ; j ¼ 1; . . . ;NPDE; l ¼ 1; . . . ;NLEV.

12: IERR – INTEGER Input/Output

On entry: may contain data passed by the routine.

On exit: should be set to 1 to force a tidy termination and an immediate return to the
calling program with IFAIL ¼ 4. IERR should remain unchanged otherwise.

MONITR must be declared as EXTERNAL in the (sub)program from which D03RAF is called.
Parameters denoted as Input must not be changed by this procedure.

17: OPTIð4Þ – INTEGER array Input

On entry: may be set to control various options available in the integrator.

OPTIð1Þ ¼ 0

All the default options are employed.
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OPTIð1Þ > 0

The default value of OPTIðiÞ, for i ¼ 2; 3 or 4, can be obtained by setting OPTIðiÞ ¼ 0.

OPTIð1Þ
Specifies the maximum number of grid levels allowed (including the base grid).
OPTIð1Þ � 0. The default value is OPTIð1Þ ¼ 3.

OPTIð2Þ
Specifies the maximum number of Jacobian evaluations allowed during each nonlinear
equations solution. OPTIð2Þ � 0. The default value is OPTIð2Þ ¼ 2.

OPTIð3Þ
Specifies the maximum number of Newton iterations in each nonlinear equations solution.
OPTIð3Þ � 0. The default value is OPTIð3Þ ¼ 10.

OPTIð4Þ
Specifies the maximum number of iterations in each linear equations solution. OPTIð4Þ � 0.
The default value is OPTIð4Þ ¼ 100.

Constraint: OPTIð1Þ � 0 and if OPTIð1Þ > 0, OPTIðiÞ � 0, for i ¼ 2; 3 or 4.

18: OPTRð3,NPDEÞ – double precision array Input

On entry: may be used to specify the optional vectors umax , ws and wt in the space and time
monitors (see Section 8).

If an optional vector is not required then all its components should be set to 1:0.

OPTRð1; jÞ, for j ¼ 1; 2; . . . ;NPDE, specifies umax
j , the approximate maximum absolute value of the

jth component of u, as used in (4) and (7). OPTRð1; jÞ > 0:0 for j ¼ 1; 2; . . . ;NPDE.

OPTRð2; jÞ, for j ¼ 1; 2; . . . ;NPDE, specifies ws
j , the weighting factors used in the space monitor

(see (4)) to indicate the relative importance of the jth component of u on the space monitor.
OPTRð2; jÞ � 0:0 for j ¼ 1; 2; . . . ;NPDE.

OPTRð3; jÞ, for j ¼ 1; 2; . . . ;NPDE, specifies wt
j, the weighting factors used in the time monitor (see

(6)) to indicate the relative importance of the jth component of u on the time monitor.
OPTRð3; jÞ � 0:0 for j ¼ 1; 2; . . . ;NPDE.

Constraints:

OPTRð1; jÞ > 0:0, for j ¼ 1; 2; . . . ;NPDE;
OPTRði; jÞ � 0:0, for i ¼ 2; 3 and j ¼ 1; 2; . . . ;NPDE.

19: RWKðLENRWKÞ – double precision array Communication Array
20: LENRWK – INTEGER Input

On entry: the dimension of the array RWK as declared in the (sub)program from which D03RAF is
called.

The required value of LENRWK cannot be determined exactly in advance, but a suggested value is

LENRWK ¼ maxpts� NPDE� 5� l þ 18� NPDEþ 9ð Þ þ 2�maxpts,

where l ¼ OPTIð1Þ if OPTIð1Þ 6¼ 0 and l ¼ 3 otherwise, and maxpts is the expected maximum
number of grid points at any one level. If during the execution the supplied value is found to be too
small then the routine returns with IFAIL ¼ 3 and an estimated required size is printed on the
current error message unit (see X04AAF).

Constraint: LENRWK � NX� NY� NPDE� 14þ 18� NPDEð Þ þ 2� NX� NY (the required
size for the initial grid).
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21: IWKðLENIWKÞ – INTEGER array Communication Array

On entry: if IND ¼ 0, IWK need not be set. Otherwise IWK must remain unchanged from a
previous call to D03RAF.

On exit: the following components of the array IWK concern the efficiency of the integration. Here,
m is the maximum number of grid levels allowed (m ¼ OPTIð1Þ if OPTIð1Þ > 1 and m ¼ 3
otherwise), and l is a grid level taking the values l ¼ 1; 2; . . . ; nl, where nl is the number of levels
used.

IWKð1Þ
Contains the number of steps taken in time.

IWKð2Þ
Contains the number of rejected time steps.

IWKð2þ lÞ
Contains the total number of residual evaluations performed (i.e., the number of times
PDEDEF was called) at grid level l.

IWKð2þ mþ lÞ
Contains the total number of Jacobian evaluations performed at grid level l.

IWKð2þ 2� mþ lÞ
Contains the total number of Newton iterations performed at grid level l.

IWKð2þ 3� mþ lÞ
Contains the total number of linear solver iterations performed at grid level l.

IWKð2þ 4� mþ lÞ
Contains the maximum number of Newton iterations performed at any one time step at grid
level l.

IWKð2þ 5� mþ lÞ
Contains the maximum number of linear solver iterations performed at any one time step at
grid level l.

Note: the total and maximum numbers are cumulative over all calls to D03RAF. If the specified
maximum number of Newton or linear solver iterations is exceeded at any stage, then the
maximums above are set to the specified maximum plus one.

22: LENIWK – INTEGER Input

On entry: the dimension of the array IWK as declared in the (sub)program from which D03RAF is
called.

The required value of LENIWK cannot be determined exactly in advance, but a suggested value is

LENIWK ¼ maxpts� 14þ 5� mð Þ þ 7� mþ 2,

where maxpts is the expected maximum number of grid points at any one level and m ¼ OPTIð1Þ
if OPTIð1Þ > 0 and m ¼ 3 otherwise. If during the execution the supplied value is found to be too
small then the routine returns with IFAIL ¼ 3 and an estimated required size is printed on the
current error message unit (see X04AAF).

Constraint: LENIWK � 19� NX� NYþ 9 (the required size for the initial grid).

23: LWKðLENLWKÞ – LOGICAL array Workspace
24: LENLWK – INTEGER Input

On entry: the dimension of the array LWK as declared in the (sub)program from which D03RAF is
called.
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The required value of LENLWK cannot be determined exactly in advanced, but a suggested value is

LENLWK ¼ maxptsþ 1,

where maxpts is the expected maximum number of grid points at any one level. If during the
execution the supplied value is found to be too small then the routine returns with IFAIL ¼ 3 and
an estimated required size is printed on the current error message unit (see X04AAF).

Constraint: LENLWK � NX� NYþ 1 (the required size for the initial grid).

25: ITRACE – INTEGER Input

On entry: the level of trace information required from D03RAF. ITRACE may take the value �1,
0, 1, 2, or 3.

ITRACE ¼ �1

No output is generated.

ITRACE ¼ 0

Only warning messages are printed.

ITRACE > 0

Output from the underlying solver is printed on the current advisory message unit (see
X04ABF). This output contains details of the time integration, the nonlinear iteration and the
linear solver.

If ITRACE < �1, then �1 is assumed and similarly if ITRACE > 3, then 3 is assumed.

The advisory messages are given in greater detail as ITRACE increases. Setting ITRACE ¼ 1
allows you to monitor the progress of the integration without possibly excessive information.

26: IND – INTEGER Input/Output

On entry: must be set to 0 or 1.

IND ¼ 0

Starts the integration in time.

IND ¼ 1

Continues the integration after an earlier exit from the routine. In this case, only the
following parameters may be reset between calls to D03RAF: TOUT, DTð2Þ, DTð3Þ, TOLS,
TOLT, OPTI, OPTR, ITRACE and IFAIL.

Constraint: 0 � IND � 1.

On exit: IND ¼ 1.

27: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NPDE < 1,
or TOUT � TS,
or TOUT is too close to TS,
or IND ¼ 0 and DTð1Þ < 0:0,
or DTðiÞ < 0:0, for i ¼ 2 or 3,
or DTð2Þ > DTð3Þ,
or IND ¼ 0:0 and 0:0 < DTð1Þ < 10�machine precision�max TSj j; TOUTj jð Þ,
or IND ¼ 0:0 and DTð1Þ > TOUT� TS,
or IND ¼ 0:0 and DTð1Þ < DTð2Þ or DTð1Þ > DTð3Þ,
or XMIN � XMAX,
or XMAX too close to XMIN,
or YMIN � YMAX,
or YMAX too close to YMIN,
or NX or NY < 4,
or TOLS or TOLT � 0:0,
or OPTIð1Þ < 0,
or OPTIð1Þ > 0 and OPTIðjÞ < 0, for j ¼ 2, 3 or 4,
or OPTRð1; jÞ � 0:0, for some j ¼ 1; 2; . . . ;NPDE,
or OPTRð2; jÞ < 0:0, for some j ¼ 1; 2; . . . ;NPDE,
or OPTRð3; jÞ < 0:0, for some j ¼ 1; 2; . . . ;NPDE,
or LENRWK, LENIWK or LENLWK too small for initial grid level,
or IND 6¼ 0 or 1,
or IND ¼ 1 on initial entry to D03RAF.

IFAIL ¼ 2

The time step size to be attempted is less than the specified minimum size. This may occur
following time step failures and subsequent step size reductions caused by one or more of the
following:

the requested accuracy could not be achieved, i.e., TOLT is too small,

the maximum number of linear solver iterations, Newton iterations or Jacobian evaluations is
too small,

ILU decomposition of the Jacobian matrix could not be performed, possibly due to
singularity of the Jacobian.

Setting ITRACE to a higher value may provide further information.

In the latter two cases you are advised to check their problem formulation in PDEDEF and/or
BNDARY, and the initial values in PDEIV if appropriate.

IFAIL ¼ 3

One or more of the workspace arrays is too small for the required number of grid points. An
estimate of the required sizes for the current stage is output, but more space may be required at a
later stage.

IFAIL ¼ 4

IERR was set to 1 in the user-supplied (sub)program MONITR, forcing control to be passed back to
calling program. Integration was successful as far as T ¼ TS.
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IFAIL ¼ 5

The integration has been completed but the maximum number of levels specified in OPTIð1Þ was
insufficient at one or more time steps, meaning that the requested space accuracy could not be
achieved. To avoid this warning either increase the value of OPTIð1Þ or decrease the value of
TOLS.

7 Accuracy

There are three sources of error in the algorithm: space and time discretization, and interpolation (linear)
between grid levels. The space and time discretization errors are controlled separately using the parameters
TOLS and TOLT described in the following section, and you should test the effects of varying these
parameters. Interpolation errors are generally implicitly controlled by the refinement criterion since in
areas where interpolation errors are potentially large, the space monitor will also be large. It can be shown
that the global spatial accuracy is comparable to that which would be obtained on a uniform grid of the
finest grid size. A full error analysis can be found in Trompert and Verwer (1993).

8 Further Comments

8.1 Algorithm Outline

The local uniform grid refinement method is summarized as follows:

1. Initialize the course base grid, an initial solution and an initial time step.

2. Solve the system of PDEs on the current grid with the current time step.

3. If the required accuracy in space and the maximum number of grid levels have not yet been reached:

(a) Determine new finer grid at forward time level.

(b) Get solution values at previous time level(s) on new grid.

(c) Interpolate internal boundary-values from old grid at forward time.

(d) Get initial values for the Newton process at forward time.

(e) Go to 2.

4. Update the coarser grid solution using the finer grid values.

5. Estimate error in time integration. If time error is acceptable advance time level.

6. Determine new step size then go to 2 with coarse base as current grid.

8.2 Refinement Strategy

For each grid point i a space monitor �s
i is determined by

�s
i ¼ max

j¼1;NPDE
�j �x2

@2

@x2
uj xi; yi; tð Þ

����
����þ �y2

@2

@y2
uj xi; yi; tð Þ

����
����

� �� �
, ð3Þ

where �x and �y are the grid widths in the x and y directions; and xi, yi are the x and y co-ordinates at
grid point i. The parameter �j is obtained from

�j ¼
ws
j

umax
j �

, ð4Þ

where � is the user-supplied space tolerance; ws
j is a weighting factor for the relative importance of the jth

PDE component on the space monitor; and umax
j is the approximate maximum absolute value of the jth

component. A value for � must be supplied by you. Values for ws
j and umax

j must also be supplied but
may be set to the value 1:0 if little information about the solution is known.

A new level of refinement is created if

max
i

�s
if g > 0:9 or 1:0, ð5Þ
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depending on the grid level at the previous step in order to avoid fluctuations in the number of grid levels
between time steps. If (5) is satisfied then all grid points for which �s

i > 0:25 are flagged and surrounding
cells are quartered in size.

No derefinement takes place as such, since at each time step the solution on the base grid is computed first
and new finer grids are then created based on the new solution. Hence derefinement occurs implicitly. See
Section 8.1.

8.3 Time Integration

The time integration is controlled using a time monitor calculated at each level l up to the maximum level
used, given by

�t
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XNPDE
j¼1

wt
j

XNGPTSðlÞ

i¼1

�t

�ij
ut xi; yi; tð Þ

� �2

vuut ð6Þ

where NGPTSðlÞ is the total number of points on grid level l; N ¼ NGPTSðlÞ � NPDE; �t is the current
time step; ut is the time derivative of u which is approximated by first-order finite differences; wt

j is the
time equivalent of the space weighting factor ws

j ; and �ij is given by

�ij ¼ �
umax
j

100
þ u xi; yi; tð Þj j

� �
ð7Þ

where umax
j is as before, and � is the user-specified time tolerance.

An integration step is rejected and retried at all levels if

max
l

�t
l

	 

> 1:0. ð8Þ

9 Example

For this routine two examples are presented, with a main program and two example problems given in the
(sub)programs EX1 and EX2.

Example 1 (EX1)

This example stems from combustion theory and is a model for a single, one-step reaction of a mixture of
two chemicals (see Adjerid and Flaherty (1988)). The PDE for the temperature of the mixture u is

@u

@t
¼ d

@2u

@x2
þ @2u

@y2

� �
þ D 1þ �� uð Þ exp ��

u

� �

for 0 � x; y � 1 and t � 0, with initial conditions u x; y; 0ð Þ ¼ 1 for 0 � x; y � 1, and boundary conditions

ux 0; y; tð Þ ¼ 0; u 1; y; tð Þ ¼ 1 for 0 � y � 1,

uy x; 0; tð Þ ¼ 0; u x; 1; tð Þ ¼ 1 for 0 � x � 1.

The heat release parameter � ¼ 1, the Damkohler number D ¼ R exp �ð Þ= ��ð Þ, the activation energy
� ¼ 20, the reaction rate R ¼ 5, and the diffusion parameter d ¼ 0:1.

For small times the temperature gradually increases in a circular region about the origin, and at about
t ¼ 0:24 ‘ignition’ occurs causing the temperature to suddenly jump from near unity to 1þ �, and a
reaction front forms and propagates outwards, becoming steeper. Thus during the solution, just one grid
level is used up to the ignition point, then two levels, and then three as the reaction front steepens.

Example 2 (EX2)

This example is taken from a multispecies food web model, in which predator-prey relationships in a
spatial domain are simulated (see Brown et al. (1994)). In this example there is just one species each of
prey and predator, and the two PDEs for the concentrations c1 and c2 of the prey and the predator
respectively are
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@c1
@t

¼ c1 b1 þ a11c1 þ a12c2ð Þ þ d1
@2c1
@x2

þ @2c1
@y2

� �
,

0 ¼ c2 b2 þ a21c1 þ a22c2ð Þ þ d2
@2c2
@x2

þ @2c2
@y2

� �
,

with

a11 ¼ a22 ¼ �1,
a12 ¼ �0:5� 10�6, and
a21 ¼ 104, and
b1 ¼ 1þ �xyþ � sin 4	xð Þ sin 4	yð Þ,

where � ¼ 50 and � ¼ 300, and b2 ¼ �b1.

The initial conditions are taken to be simple peaked functions which satisfy the boundary conditions and
very nearly satisfy the PDEs:

c1 ¼ 10þ 16x 1� xð Þy 1� yð Þð Þ2,

c2 ¼ b2 þ a21c1,

and the boundary conditions are of Neumann type, i.e., zero normal derivatives everywhere.

During the solution a number of peaks and troughs develop across the domain, and so the number of levels
required increases with time. Since the solution varies rapidly in space across the whole of the domain,
refinement at intermediate levels tends to occur at all points of the domain.

9.1 Program Text

* D03RAF Example Program Text
* Mark 19 Revised. NAG Copyright 1999.
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)

* .. External Subroutines ..
EXTERNAL EX1, EX2

* .. Executable Statements ..
WRITE (NOUT,*) ’D03RAF Example Program Results’
CALL EX1
CALL EX2
STOP
END

*
SUBROUTINE EX1

* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER MXLEV, NPDE, NPTS
PARAMETER (MXLEV=3,NPDE=1,NPTS=2000)
INTEGER LENIWK, LENRWK, LENLWK
PARAMETER (LENIWK=NPTS*(5*MXLEV+14)+2+7*MXLEV,

+ LENRWK=NPTS*NPDE*(5*MXLEV+9+18*NPDE)+NPTS*2,
+ LENLWK=NPTS+1)

* .. Scalars in Common ..
DOUBLE PRECISION ALPHA, D, DELTA, DIFF, REAC
INTEGER IOUT

* .. Arrays in Common ..
DOUBLE PRECISION TWANT(2)

* .. Local Scalars ..
DOUBLE PRECISION TOLS, TOLT, TOUT, TS, XMAX, XMIN, YMAX, YMIN
INTEGER I, IFAIL, IND, ITRACE, J, MAXLEV, NX, NY

* .. Local Arrays ..
DOUBLE PRECISION DT(3), OPTR(3,NPDE), RWK(LENRWK)
INTEGER IWK(LENIWK), OPTI(4)
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LOGICAL LWK(LENLWK)
* .. External Subroutines ..

EXTERNAL BNDRY1, D03RAF, MONIT1, PDEF1, PDEIV1
* .. Intrinsic Functions ..

INTRINSIC EXP
* .. Common blocks ..

COMMON /OTIME1/TWANT, IOUT
COMMON /PARAM1/ALPHA, DELTA, REAC, DIFF, D

* .. Executable Statements ..
WRITE (NOUT,*)
WRITE (NOUT,*)
WRITE (NOUT,*) ’Example 1’
WRITE (NOUT,*)

*
* Problem Parameters
*

ALPHA = 1.0D0
DELTA = 20.0D0
REAC = 5.0D0
DIFF = 0.1D0
D = REAC*EXP(DELTA)/(ALPHA*DELTA)

*
IND = 0
ITRACE = 0
TS = 0.0D0
DT(1) = 0.1D-2
DT(2) = 0.0D0
DT(3) = 0.0D0
TOUT = 0.24D0
TWANT(1) = 0.24D0
TWANT(2) = 0.25D0
XMIN = 0.0D0
XMAX = 1.0D0
YMIN = 0.0D0
YMAX = 1.0D0
NX = 21
NY = 21
TOLS = 0.5D0
TOLT = 0.01D0
DO 20 I = 1, 4

OPTI(I) = 0
20 CONTINUE

DO 60 J = 1, NPDE
DO 40 I = 1, 3

OPTR(I,J) = 1.0D0
40 CONTINUE
60 CONTINUE

*
DO 120 IOUT = 1, 2

IFAIL = -1
TOUT = TWANT(IOUT)
CALL D03RAF(NPDE,TS,TOUT,DT,XMIN,XMAX,YMIN,YMAX,NX,NY,TOLS,

+ TOLT,PDEF1,BNDRY1,PDEIV1,MONIT1,OPTI,OPTR,RWK,
+ LENRWK,IWK,LENIWK,LWK,LENLWK,ITRACE,IND,IFAIL)

*
* Print statistics
*

WRITE (NOUT,’(’’ Statistics:’’)’)
WRITE (NOUT,’(’’ Time = ’’,F8.4)’) TS
WRITE (NOUT,’(’’ Total number of accepted timesteps =’’, I5)’)

+ IWK(1)
WRITE (NOUT,’(’’ Total number of rejected timesteps =’’, I5)’)

+ IWK(2)
WRITE (NOUT,*)
WRITE (NOUT,

+ ’(’’ T o t a l n u m b e r o f ’’)’)
WRITE (NOUT,

+ ’(’’ Residual Jacobian Newton ’’ , ’’ Lin sys’’)’
+ )

WRITE (NOUT,
+ ’(’’ evals evals iters ’’ , ’’ iters’’)’
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+ )
WRITE (NOUT,’(’’ At level ’’)’)
MAXLEV = 3
DO 80 J = 1, MAXLEV

IF (IWK(J+2).NE.0) WRITE (NOUT,’(I8,4I10)’) J, IWK(J+2),
+ IWK(J+2+MAXLEV), IWK(J+2+2*MAXLEV), IWK(J+2+3*MAXLEV)

*
80 CONTINUE

WRITE (NOUT,*)
WRITE (NOUT,

+ ’(’’ M a x i m u m n u m b e r ’’, ’’ o f’’)’)
WRITE (NOUT,

+ ’(’’ Newton iters Lin sys iters ’’)’)
WRITE (NOUT,’(’’ At level ’’)’)
DO 100 J = 1, MAXLEV

IF (IWK(J+2).NE.0) WRITE (NOUT,’(I8,2I14)’) J,
+ IWK(J+2+4*MAXLEV), IWK(J+2+5*MAXLEV)

100 CONTINUE
WRITE (NOUT,*)

*
120 CONTINUE

*
RETURN
END

*
SUBROUTINE PDEIV1(NPTS,NPDE,T,X,Y,U)

* .. Scalar Arguments ..
DOUBLE PRECISION T
INTEGER NPDE, NPTS

* .. Array Arguments ..
DOUBLE PRECISION U(NPTS,NPDE), X(NPTS), Y(NPTS)

* .. Local Scalars ..
*

INTEGER I
* .. Executable Statements ..

DO 20 I = 1, NPTS
U(I,1) = 1.0D0

20 CONTINUE
*

RETURN
END

*
SUBROUTINE PDEF1(NPTS,NPDE,T,X,Y,U,UT,UX,UY,UXX,UXY,UYY,RES)

* .. Scalar Arguments ..
DOUBLE PRECISION T
INTEGER NPDE, NPTS

* .. Array Arguments ..
DOUBLE PRECISION RES(NPTS,NPDE), U(NPTS,NPDE), UT(NPTS,NPDE),

+ UX(NPTS,NPDE), UXX(NPTS,NPDE), UXY(NPTS,NPDE),
+ UY(NPTS,NPDE), UYY(NPTS,NPDE), X(NPTS), Y(NPTS)

* .. Scalars in Common ..
DOUBLE PRECISION ALPHA, D, DELTA, DIFF, REAC

* .. Local Scalars ..
INTEGER I

* .. Intrinsic Functions ..
INTRINSIC EXP

* .. Common blocks ..
COMMON /PARAM1/ALPHA, DELTA, REAC, DIFF, D

* .. Executable Statements ..
DO 20 I = 1, NPTS

RES(I,1) = UT(I,1) - DIFF*(UXX(I,1)+UYY(I,1)) -
+ D*(1.0D0+ALPHA-U(I,1))*EXP(-DELTA/U(I,1))

20 CONTINUE
*

RETURN
END

*
SUBROUTINE BNDRY1(NPTS,NPDE,T,X,Y,U,UT,UX,UY,NBPTS,LBND,RES)

* .. Scalar Arguments ..
DOUBLE PRECISION T
INTEGER NBPTS, NPDE, NPTS
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* .. Array Arguments ..
DOUBLE PRECISION RES(NPTS,NPDE), U(NPTS,NPDE), UT(NPTS,NPDE),

+ UX(NPTS,NPDE), UY(NPTS,NPDE), X(NPTS), Y(NPTS)
INTEGER LBND(NBPTS)

* .. Local Scalars ..
DOUBLE PRECISION TOL
INTEGER I, J

* .. External Functions ..
DOUBLE PRECISION X02AJF
EXTERNAL X02AJF

* .. Intrinsic Functions ..
*

INTRINSIC ABS
* .. Executable Statements ..

TOL = 10.D0*X02AJF()
*

DO 20 I = 1, NBPTS
J = LBND(I)
IF (ABS(X(J)).LE.TOL) THEN

RES(J,1) = UX(J,1)
ELSE IF (ABS(X(J)-1.0D0).LE.TOL) THEN

RES(J,1) = U(J,1) - 1.0D0
ELSE IF (ABS(Y(J)).LE.TOL) THEN

RES(J,1) = UY(J,1)
ELSE IF (ABS(Y(J)-1.0D0).LE.TOL) THEN

RES(J,1) = U(J,1) - 1.0D0
END IF

20 CONTINUE
*

RETURN
END

*
SUBROUTINE MONIT1(NPDE,T,DT,DTNEW,TLAST,NLEV,NGPTS,XPTS,YPTS,LSOL,

+ SOL,IERR)
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)

* .. Scalar Arguments ..
DOUBLE PRECISION DT, DTNEW, T
INTEGER IERR, NLEV, NPDE
LOGICAL TLAST

* .. Array Arguments ..
DOUBLE PRECISION SOL(*), XPTS(*), YPTS(*)
INTEGER LSOL(NLEV), NGPTS(NLEV)

* .. Scalars in Common ..
INTEGER IOUT

* .. Arrays in Common ..
DOUBLE PRECISION TWANT(2)

* .. Local Scalars ..
INTEGER I, IPSOL, IPT, LEVEL, NPTS

* .. Common blocks ..
COMMON /OTIME1/TWANT, IOUT

* .. Executable Statements ..
IF (TLAST) THEN

*
* Print solution
*

IF (IOUT.EQ.2) THEN
WRITE (NOUT,

+’(’’ Solution at every 4th grid point ’’, ’’in level 1 at time ’’,
+ F8.4,’’:’’)’) T

WRITE (NOUT,*)
WRITE (NOUT,’(7X,’’x’’,10X,’’y’’,8X,’’approx u’’)’)
WRITE (NOUT,*)
LEVEL = 1
NPTS = NGPTS(LEVEL)
IPSOL = LSOL(LEVEL)
IPT = 1
DO 20 I = 1, NPTS, 4

WRITE (NOUT,’(3(1X,E11.4))’) XPTS(IPT+I-1),
+ YPTS(IPT+I-1), SOL(IPSOL+I)
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20 CONTINUE
WRITE (NOUT,*)

END IF
END IF

*
RETURN
END

*
SUBROUTINE EX2

* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER MXLEV, NPDE, NPTS
PARAMETER (MXLEV=4,NPDE=2,NPTS=2000)
INTEGER LENIWK, LENRWK, LENLWK
PARAMETER (LENIWK=2*NPTS*(5*MXLEV+14)+2+7*MXLEV,

+ LENRWK=2*NPTS*NPDE*(5*MXLEV+9+18*NPDE)+NPTS*2,
+ LENLWK=2*NPTS+400)

* .. Scalars in Common ..
DOUBLE PRECISION ALPHA, BETA, PI
INTEGER IOUT

* .. Arrays in Common ..
DOUBLE PRECISION TWANT(2)

* .. Local Scalars ..
DOUBLE PRECISION TOLS, TOLT, TOUT, TS, XMAX, XMIN, XX, YMAX, YMIN
INTEGER I, IFAIL, IND, ITRACE, J, MAXLEV, NX, NY

* .. Local Arrays ..
DOUBLE PRECISION DT(3), OPTR(3,NPDE), RWK(LENRWK)
INTEGER IWK(LENIWK), OPTI(4)
LOGICAL LWK(LENLWK)

* .. External Functions ..
DOUBLE PRECISION X01AAF
EXTERNAL X01AAF

* .. External Subroutines ..
EXTERNAL BNDRY2, D03RAF, MONIT2, PDEF2, PDEIV2

* .. Common blocks ..
COMMON /OTIME2/TWANT, IOUT
COMMON /PARAM2/ALPHA, BETA, PI

* .. Executable Statements ..
WRITE (NOUT,*)
WRITE (NOUT,*)
WRITE (NOUT,*) ’Example 2’
WRITE (NOUT,*)

*
XX = 0.0D0
PI = X01AAF(XX)
ALPHA = 50.0D0
BETA = 300.0D0

*
IND = 0
ITRACE = 0
TS = 0.0D0
TWANT(1) = 0.01D0
TWANT(2) = 0.025D0
DT(1) = 0.5D-3
DT(2) = 1.0D-6
DT(3) = 0.0D0
XMIN = 0.0D0
XMAX = 1.0D0
YMIN = 0.0D0
YMAX = 1.0D0
TOLS = 0.075D0
TOLT = 0.1D0
NX = 11
NY = 11
OPTI(1) = 4
DO 20 I = 2, 4

OPTI(I) = 0
20 CONTINUE

OPTR(1,1) = 250.0D0
OPTR(1,2) = 1.5D6
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DO 60 J = 1, NPDE
DO 40 I = 2, 3

OPTR(I,J) = 1.0D0
40 CONTINUE
60 CONTINUE

*
DO 120 IOUT = 1, 2

IFAIL = -1
TOUT = TWANT(IOUT)
CALL D03RAF(NPDE,TS,TOUT,DT,XMIN,XMAX,YMIN,YMAX,NX,NY,TOLS,

+ TOLT,PDEF2,BNDRY2,PDEIV2,MONIT2,OPTI,OPTR,RWK,
+ LENRWK,IWK,LENIWK,LWK,LENLWK,ITRACE,IND,IFAIL)

*
* Print statistics
*

MAXLEV = OPTI(1)
WRITE (NOUT,’(’’ Statistics:’’)’)
WRITE (NOUT,’(’’ Time = ’’,F8.4)’) TS
WRITE (NOUT,’(’’ Total number of accepted timesteps =’’, I5)’)

+ IWK(1)
WRITE (NOUT,’(’’ Total number of rejected timesteps =’’, I5)’)

+ IWK(2)
WRITE (NOUT,*)
WRITE (NOUT,

+ ’(’’ T o t a l n u m b e r o f ’’)’)
WRITE (NOUT,

+ ’(’’ Residual Jacobian Newton ’’ , ’’ Lin sys’’)’
+ )

WRITE (NOUT,
+ ’(’’ evals evals iters ’’ , ’’ iters’’)’
+ )

WRITE (NOUT,’(’’ At level ’’)’)
MAXLEV = OPTI(1)
DO 80 J = 1, MAXLEV

IF (IWK(J+2).NE.0) WRITE (NOUT,’(I6,4I10)’) J, IWK(J+2),
+ IWK(J+2+MAXLEV), IWK(J+2+2*MAXLEV), IWK(J+2+3*MAXLEV)

*
80 CONTINUE

WRITE (NOUT,*)
WRITE (NOUT,

+ ’(’’ M a x i m u m n u m b e r ’’, ’’ o f’’)’)
WRITE (NOUT,

+ ’(’’ Newton iters Lin sys iters ’’)’)
WRITE (NOUT,’(’’ At level ’’)’)
DO 100 J = 1, MAXLEV

IF (IWK(J+2).NE.0) WRITE (NOUT,’(I6,2I14)’) J,
+ IWK(J+2+4*MAXLEV), IWK(J+2+5*MAXLEV)

100 CONTINUE
WRITE (NOUT,*)

*
120 CONTINUE

*
RETURN
END

*
SUBROUTINE PDEIV2(NPTS,NPDE,T,X,Y,U)

* .. Scalar Arguments ..
DOUBLE PRECISION T
INTEGER NPDE, NPTS

* .. Array Arguments ..
DOUBLE PRECISION U(NPTS,NPDE), X(NPTS), Y(NPTS)

* .. Scalars in Common ..
DOUBLE PRECISION ALPHA, BETA, PI

* .. Local Scalars ..
DOUBLE PRECISION B2, FP
INTEGER I

* .. Intrinsic Functions ..
INTRINSIC SIN

* .. Common blocks ..
COMMON /PARAM2/ALPHA, BETA, PI

* .. Executable Statements ..
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FP = 4.0D0*PI
*

DO 20 I = 1, NPTS
B2 = -1.0D0 - ALPHA*X(I)*Y(I) - BETA*SIN(FP*X(I))*SIN(FP*Y(I))
U(I,1) = 1.0D1 + (16.0D0*X(I)*(1.0D0-X(I))*Y(I)*(1.0D0-Y(I)))

+ **2
U(I,2) = B2 + 1.0D4*U(I,1)

20 CONTINUE
*

RETURN
END

*
SUBROUTINE PDEF2(NPTS,NPDE,T,X,Y,U,UT,UX,UY,UXX,UXY,UYY,RES)

* .. Scalar Arguments ..
DOUBLE PRECISION T
INTEGER NPDE, NPTS

* .. Array Arguments ..
DOUBLE PRECISION RES(NPTS,NPDE), U(NPTS,NPDE), UT(NPTS,NPDE),

+ UX(NPTS,NPDE), UXX(NPTS,NPDE), UXY(NPTS,NPDE),
+ UY(NPTS,NPDE), UYY(NPTS,NPDE), X(NPTS), Y(NPTS)

* .. Scalars in Common ..
DOUBLE PRECISION ALPHA, BETA, PI

* .. Local Scalars ..
DOUBLE PRECISION B1, B2, FP
INTEGER I

* .. Intrinsic Functions ..
INTRINSIC SIN

* .. Common blocks ..
COMMON /PARAM2/ALPHA, BETA, PI

* .. Executable Statements ..
FP = 4.0D0*PI

*
DO 20 I = 1, NPTS

B1 = 1.0D0 + ALPHA*X(I)*Y(I) + BETA*SIN(FP*X(I))*SIN(FP*Y(I))
B2 = -B1
RES(I,1) = UT(I,1) - (UXX(I,1)+UYY(I,1)) - U(I,1)*(B1-U(I,1)

+ -0.5D-6*U(I,2))
RES(I,2) = -0.05D0*(UXX(I,2)+UYY(I,2)) - U(I,2)

+ *(B2+1.0D4*U(I,1)-U(I,2))
20 CONTINUE

*
RETURN
END

*
SUBROUTINE BNDRY2(NPTS,NPDE,T,X,Y,U,UT,UX,UY,NBPTS,LBND,RES)

* .. Scalar Arguments ..
DOUBLE PRECISION T
INTEGER NBPTS, NPDE, NPTS

* .. Array Arguments ..
DOUBLE PRECISION RES(NPTS,NPDE), U(NPTS,NPDE), UT(NPTS,NPDE),

+ UX(NPTS,NPDE), UY(NPTS,NPDE), X(NPTS), Y(NPTS)
INTEGER LBND(NBPTS)

* .. Local Scalars ..
DOUBLE PRECISION TOL
INTEGER I, J

* .. External Functions ..
DOUBLE PRECISION X02AJF
EXTERNAL X02AJF

* .. Intrinsic Functions ..
*

INTRINSIC ABS
* .. Executable Statements ..

TOL = 10.D0*X02AJF()
*

DO 20 I = 1, NBPTS
J = LBND(I)
IF (ABS(X(J)).LE.TOL .OR. ABS(X(J)-1.0D0).LE.TOL) THEN

RES(J,1) = UX(J,1)
RES(J,2) = UX(J,2)

ELSE IF (ABS(Y(J)).LE.TOL .OR. ABS(Y(J)-1.0D0).LE.TOL) THEN
RES(J,1) = UY(J,1)
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RES(J,2) = UY(J,2)
END IF

20 CONTINUE
*

RETURN
END

*
SUBROUTINE MONIT2(NPDE,T,DT,DTNEW,TLAST,NLEV,NGPTS,XPTS,YPTS,LSOL,

+ SOL,IERR)
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)

* .. Scalar Arguments ..
DOUBLE PRECISION DT, DTNEW, T
INTEGER IERR, NLEV, NPDE
LOGICAL TLAST

* .. Array Arguments ..
DOUBLE PRECISION SOL(*), XPTS(*), YPTS(*)
INTEGER LSOL(NLEV), NGPTS(NLEV)

* .. Scalars in Common ..
INTEGER IOUT

* .. Arrays in Common ..
DOUBLE PRECISION TWANT(2)

* .. Local Scalars ..
INTEGER I, IPSOL, IPT, LEVEL, NPTS

* .. Common blocks ..
COMMON /OTIME2/TWANT, IOUT

* .. Executable Statements ..
IF (TLAST) THEN

*
* Print solution
*

IF (IOUT.EQ.2) THEN
WRITE (NOUT,

+’(’’ Solution at every 2nd grid point ’’, ’’in level 1 at time ’’,
+ F8.4,’’:’’)’) T

WRITE (NOUT,*)
WRITE (NOUT,

+ ’(7X,’’x’’,10X,’’y’’,9X,’’approx c1’’,3X,’’approx c2’’)’)
WRITE (NOUT,*)
LEVEL = 1
NPTS = NGPTS(LEVEL)
IPSOL = LSOL(LEVEL)
IPT = 1
DO 20 I = 1, NPTS, 2

WRITE (NOUT,’(2(1X,E11.4),2X,E11.4,2X,E11.4)’)
+ XPTS(IPT+I-1), YPTS(IPT+I-1), SOL(IPSOL+I),
+ SOL(IPSOL+NPTS+I)

20 CONTINUE
WRITE (NOUT,*)

END IF
END IF

*
RETURN
END

9.2 Program Data

None.

9.3 Program Results

D03RAF Example Program Results

Example 1

Statistics:
Time = 0.2400
Total number of accepted timesteps = 75
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Total number of rejected timesteps = 0

T o t a l n u m b e r o f
Residual Jacobian Newton Lin sys

evals evals iters iters
At level

1 600 75 150 159

M a x i m u m n u m b e r o f
Newton iters Lin sys iters

At level
1 2 2

Solution at every 4th grid point in level 1 at time 0.2500:

x y approx u

0.0000E+00 0.0000E+00 0.2000E+01
0.2000E+00 0.0000E+00 0.2000E+01
0.4000E+00 0.0000E+00 0.2000E+01
0.6000E+00 0.0000E+00 0.2000E+01
0.8000E+00 0.0000E+00 0.1240E+01
0.1000E+01 0.0000E+00 0.1000E+01
0.1500E+00 0.5000E-01 0.2000E+01
0.3500E+00 0.5000E-01 0.2000E+01
0.5500E+00 0.5000E-01 0.2000E+01
0.7500E+00 0.5000E-01 0.1645E+01
0.9500E+00 0.5000E-01 0.1048E+01
0.1000E+00 0.1000E+00 0.2000E+01
0.3000E+00 0.1000E+00 0.2000E+01
0.5000E+00 0.1000E+00 0.2000E+01
0.7000E+00 0.1000E+00 0.1999E+01
0.9000E+00 0.1000E+00 0.1097E+01
0.5000E-01 0.1500E+00 0.2000E+01
0.2500E+00 0.1500E+00 0.2000E+01
0.4500E+00 0.1500E+00 0.2000E+01
0.6500E+00 0.1500E+00 0.2000E+01
0.8500E+00 0.1500E+00 0.1154E+01
0.0000E+00 0.2000E+00 0.2000E+01
0.2000E+00 0.2000E+00 0.2000E+01
0.4000E+00 0.2000E+00 0.2000E+01
0.6000E+00 0.2000E+00 0.2000E+01
0.8000E+00 0.2000E+00 0.1240E+01
0.1000E+01 0.2000E+00 0.1000E+01
0.1500E+00 0.2500E+00 0.2000E+01
0.3500E+00 0.2500E+00 0.2000E+01
0.5500E+00 0.2500E+00 0.2000E+01
0.7500E+00 0.2500E+00 0.1635E+01
0.9500E+00 0.2500E+00 0.1048E+01
0.1000E+00 0.3000E+00 0.2000E+01
0.3000E+00 0.3000E+00 0.2000E+01
0.5000E+00 0.3000E+00 0.2000E+01
0.7000E+00 0.3000E+00 0.1999E+01
0.9000E+00 0.3000E+00 0.1097E+01
0.5000E-01 0.3500E+00 0.2000E+01
0.2500E+00 0.3500E+00 0.2000E+01
0.4500E+00 0.3500E+00 0.2000E+01
0.6500E+00 0.3500E+00 0.2000E+01
0.8500E+00 0.3500E+00 0.1153E+01
0.0000E+00 0.4000E+00 0.2000E+01
0.2000E+00 0.4000E+00 0.2000E+01
0.4000E+00 0.4000E+00 0.2000E+01
0.6000E+00 0.4000E+00 0.2000E+01
0.8000E+00 0.4000E+00 0.1234E+01
0.1000E+01 0.4000E+00 0.1000E+01
0.1500E+00 0.4500E+00 0.2000E+01
0.3500E+00 0.4500E+00 0.2000E+01
0.5500E+00 0.4500E+00 0.2000E+01
0.7500E+00 0.4500E+00 0.1508E+01
0.9500E+00 0.4500E+00 0.1048E+01
0.1000E+00 0.5000E+00 0.2000E+01
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0.3000E+00 0.5000E+00 0.2000E+01
0.5000E+00 0.5000E+00 0.2000E+01
0.7000E+00 0.5000E+00 0.1993E+01
0.9000E+00 0.5000E+00 0.1095E+01
0.5000E-01 0.5500E+00 0.2000E+01
0.2500E+00 0.5500E+00 0.2000E+01
0.4500E+00 0.5500E+00 0.2000E+01
0.6500E+00 0.5500E+00 0.2000E+01
0.8500E+00 0.5500E+00 0.1145E+01
0.0000E+00 0.6000E+00 0.2000E+01
0.2000E+00 0.6000E+00 0.2000E+01
0.4000E+00 0.6000E+00 0.2000E+01
0.6000E+00 0.6000E+00 0.2000E+01
0.8000E+00 0.6000E+00 0.1200E+01
0.1000E+01 0.6000E+00 0.1000E+01
0.1500E+00 0.6500E+00 0.2000E+01
0.3500E+00 0.6500E+00 0.2000E+01
0.5500E+00 0.6500E+00 0.2000E+01
0.7500E+00 0.6500E+00 0.1253E+01
0.9500E+00 0.6500E+00 0.1044E+01
0.1000E+00 0.7000E+00 0.1999E+01
0.3000E+00 0.7000E+00 0.1999E+01
0.5000E+00 0.7000E+00 0.1993E+01
0.7000E+00 0.7000E+00 0.1279E+01
0.9000E+00 0.7000E+00 0.1082E+01
0.5000E-01 0.7500E+00 0.1645E+01
0.2500E+00 0.7500E+00 0.1635E+01
0.4500E+00 0.7500E+00 0.1508E+01
0.6500E+00 0.7500E+00 0.1253E+01
0.8500E+00 0.7500E+00 0.1109E+01
0.0000E+00 0.8000E+00 0.1240E+01
0.2000E+00 0.8000E+00 0.1240E+01
0.4000E+00 0.8000E+00 0.1234E+01
0.6000E+00 0.8000E+00 0.1200E+01
0.8000E+00 0.8000E+00 0.1119E+01
0.1000E+01 0.8000E+00 0.1000E+01
0.1500E+00 0.8500E+00 0.1154E+01
0.3500E+00 0.8500E+00 0.1153E+01
0.5500E+00 0.8500E+00 0.1145E+01
0.7500E+00 0.8500E+00 0.1109E+01
0.9500E+00 0.8500E+00 0.1029E+01
0.1000E+00 0.9000E+00 0.1097E+01
0.3000E+00 0.9000E+00 0.1097E+01
0.5000E+00 0.9000E+00 0.1095E+01
0.7000E+00 0.9000E+00 0.1082E+01
0.9000E+00 0.9000E+00 0.1039E+01
0.5000E-01 0.9500E+00 0.1048E+01
0.2500E+00 0.9500E+00 0.1048E+01
0.4500E+00 0.9500E+00 0.1048E+01
0.6500E+00 0.9500E+00 0.1044E+01
0.8500E+00 0.9500E+00 0.1029E+01
0.0000E+00 0.1000E+01 0.1000E+01
0.2000E+00 0.1000E+01 0.1000E+01
0.4000E+00 0.1000E+01 0.1000E+01
0.6000E+00 0.1000E+01 0.1000E+01
0.8000E+00 0.1000E+01 0.1000E+01
0.1000E+01 0.1000E+01 0.1000E+01

Statistics:
Time = 0.2500
Total number of accepted timesteps = 180
Total number of rejected timesteps = 1

T o t a l n u m b e r o f
Residual Jacobian Newton Lin sys

evals evals iters iters
At level

1 1468 181 382 391
2 662 82 170 170
3 177 22 45 45
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M a x i m u m n u m b e r o f
Newton iters Lin sys iters

At level
1 4 2
2 4 1
3 3 1

Example 2

Statistics:
Time = 0.0100
Total number of accepted timesteps = 14
Total number of rejected timesteps = 0

T o t a l n u m b e r o f
Residual Jacobian Newton Lin sys

evals evals iters iters
At level

1 196 14 28 42
2 168 12 24 34
3 70 5 10 16

M a x i m u m n u m b e r o f
Newton iters Lin sys iters

At level
1 2 2
2 2 2
3 2 3

Solution at every 2nd grid point in level 1 at time 0.0250:

x y approx c1 approx c2

0.0000E+00 0.0000E+00 0.6615E+02 0.6615E+06
0.2000E+00 0.0000E+00 0.5138E+02 0.5137E+06
0.4000E+00 0.0000E+00 0.1274E+02 0.1275E+06
0.6000E+00 0.0000E+00 0.5217E+02 0.5217E+06
0.8000E+00 0.0000E+00 0.1684E+02 0.1684E+06
0.1000E+01 0.0000E+00 0.4618E+01 0.4619E+05
0.1000E+00 0.1000E+00 0.8832E+02 0.8829E+06
0.3000E+00 0.1000E+00 0.1897E+02 0.1898E+06
0.5000E+00 0.1000E+00 0.3109E+02 0.3109E+06
0.7000E+00 0.1000E+00 0.5115E+02 0.5114E+06
0.9000E+00 0.1000E+00 0.6498E+01 0.6526E+05
0.0000E+00 0.2000E+00 0.5138E+02 0.5137E+06
0.2000E+00 0.2000E+00 0.4480E+02 0.4479E+06
0.4000E+00 0.2000E+00 0.1763E+02 0.1764E+06
0.6000E+00 0.2000E+00 0.4849E+02 0.4848E+06
0.8000E+00 0.2000E+00 0.2308E+02 0.2309E+06
0.1000E+01 0.2000E+00 0.1998E+02 0.1998E+06
0.1000E+00 0.3000E+00 0.1897E+02 0.1898E+06
0.3000E+00 0.3000E+00 0.3745E+02 0.3744E+06
0.5000E+00 0.3000E+00 0.2815E+02 0.2815E+06
0.7000E+00 0.3000E+00 0.2379E+02 0.2380E+06
0.9000E+00 0.3000E+00 0.6076E+02 0.6074E+06
0.0000E+00 0.4000E+00 0.1274E+02 0.1275E+06
0.2000E+00 0.4000E+00 0.1763E+02 0.1764E+06
0.4000E+00 0.4000E+00 0.5816E+02 0.5813E+06
0.6000E+00 0.4000E+00 0.1425E+02 0.1428E+06
0.8000E+00 0.4000E+00 0.5783E+02 0.5782E+06
0.1000E+01 0.4000E+00 0.6492E+02 0.6492E+06
0.1000E+00 0.5000E+00 0.3109E+02 0.3109E+06
0.3000E+00 0.5000E+00 0.2815E+02 0.2815E+06
0.5000E+00 0.5000E+00 0.2966E+02 0.2966E+06
0.7000E+00 0.5000E+00 0.3422E+02 0.3422E+06
0.9000E+00 0.5000E+00 0.4004E+02 0.4003E+06
0.0000E+00 0.6000E+00 0.5217E+02 0.5217E+06
0.2000E+00 0.6000E+00 0.4849E+02 0.4848E+06
0.4000E+00 0.6000E+00 0.1425E+02 0.1428E+06
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0.6000E+00 0.6000E+00 0.7001E+02 0.6998E+06
0.8000E+00 0.6000E+00 0.2397E+02 0.2398E+06
0.1000E+01 0.6000E+00 0.1981E+02 0.1981E+06
0.1000E+00 0.7000E+00 0.5115E+02 0.5114E+06
0.3000E+00 0.7000E+00 0.2379E+02 0.2380E+06
0.5000E+00 0.7000E+00 0.3422E+02 0.3422E+06
0.7000E+00 0.7000E+00 0.5069E+02 0.5067E+06
0.9000E+00 0.7000E+00 0.3143E+02 0.3145E+06
0.0000E+00 0.8000E+00 0.1684E+02 0.1684E+06
0.2000E+00 0.8000E+00 0.2308E+02 0.2309E+06
0.4000E+00 0.8000E+00 0.5783E+02 0.5781E+06
0.6000E+00 0.8000E+00 0.2397E+02 0.2398E+06
0.8000E+00 0.8000E+00 0.7164E+02 0.7162E+06
0.1000E+01 0.8000E+00 0.8397E+02 0.8397E+06
0.1000E+00 0.9000E+00 0.6498E+01 0.6526E+05
0.3000E+00 0.9000E+00 0.6076E+02 0.6074E+06
0.5000E+00 0.9000E+00 0.4004E+02 0.4003E+06
0.7000E+00 0.9000E+00 0.3143E+02 0.3145E+06
0.9000E+00 0.9000E+00 0.1403E+03 0.1403E+07
0.0000E+00 0.1000E+01 0.4618E+01 0.4619E+05
0.2000E+00 0.1000E+01 0.1998E+02 0.1998E+06
0.4000E+00 0.1000E+01 0.6492E+02 0.6491E+06
0.6000E+00 0.1000E+01 0.1980E+02 0.1980E+06
0.8000E+00 0.1000E+01 0.8397E+02 0.8396E+06
0.1000E+01 0.1000E+01 0.1075E+03 0.1075E+07

Statistics:
Time = 0.0250
Total number of accepted timesteps = 29
Total number of rejected timesteps = 0

T o t a l n u m b e r o f
Residual Jacobian Newton Lin sys

evals evals iters iters
At level

1 406 29 58 87
2 378 27 54 79
3 280 20 40 61
4 98 7 14 27

M a x i m u m n u m b e r o f
Newton iters Lin sys iters

At level
1 2 2
2 2 2
3 2 3
4 2 3
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